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Abstract Responses of dynamic system to pulse perturbations were investigated
theoretically and experimentally. The model used in this paper has been proved dis-
sipative by impulsive and dynamic theory. Complex phenomena such as limit cycles,
periodic solutions, and chaos were numerically demonstrated.
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1 Introduction

Most chemical reactions can present rich phenomena in vessels, such as chemical
oscillations [1–5], period doubling, chemical waves [6,7], and chaos [8,9]. Analysis
of forced nonlinear oscillations plays an important role in understanding their dyna-
mic phenomena of electronic generators, mechanical, chemical and biological sys-
tems. Even small external disturbances are likely to change behaviors of dynamical
systems. It is well known that Prigogine had put forward a model—the brussela-
tor system, which was very simple in mathematics and but presented many com-
plex phenomena in theory [10,11]. A lot of theoretical and experimental experts
had reported in the past that the steady state was unstable and a limit cycle would
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appear under certain condition [11,12]. In 1952, Turing observed the brusselator
system with a diffusion effect and noticed the "Turing Bifurcation" for the first time
[13,14]. This explained a limit cycle could lead to chemical waves if diffusions were
taken into accounted.

There exist more complicated phenomena [4,15,16] if the brusselator system goes
on in open vessels. Actually, when experiments were done in laboratory, reactants
may be injected into a vessel by means of constant input [17], periodic input [15]
or impulsive input. To the best of our knowledge, however, few researchers focus
on how the impulsive disturbance will influence the dynamic behaviors of brusselator
system. For this reason we construct the brusselator system with impulse input and find
some interesting phenomena for instance limit cycles, periodic solutions and chaos.
In this paper, according to impulsive theory [18,19] and dynamical theory [12,20],
we theoretically proved the model dissipation, numerically simulated bifurcations and
chaos when the parameter varied within some regions.

The rest of this paper is structured as follows. In Sect. 2 we introduce the brusselator
system with impulsive input. Section 3 is devoted to the system permanent by dynamic
theory and impulsive theory. In Sect. 4 we conduct a short of bifurcation analysis
and discuss the behaviors of chaos for both mathematical analysis and numerical
simulations. In the last section we compare the brusselator system of constant input
with that of impulsive input.

2 Brusselator system with impulsive input

Firstly, the brusselator system of substrate input can be shown as follows:

{
ẋ = a − (b + 1)x + x2 y,
ẏ = bx − x2 y.

(2.1)

We suppose an excessive amount of reactors A, B are designed into vessels, so their
concentrations a, b do not change as time goes by; all rate constants are equal to 1; x(t)
and y(t) are the concentration of both reactants with an initial concentration x0 and y0
(i.e. x0 > 0, y0 > 0), where x, y ∈ R+, and a, b ∈ R+. This model has been proved
there exists a stable limit cycle (see Fig. 7) if the condition b > 1+a2 is satisfied [12].

With an impulsive effect, the above reaction becomes:

⎧⎨
⎩

ẋ = −(b + 1)x + x2 y, t �= nτ,
ẏ = bx − x2 y,
x(t+) = x(t)+ a, t = nτ.

(2.2)

We assume the amount of reactor B is excessive, thus its concentration b does not
change as time goes by; but, reactor A is ingested into vessels in amounts of a at the
fixed time nτ . Similarly, as a hypothesis all rate constants are equal to 1; x(t) and
y(t) are the concentrations of both reactants with an initial concentration x0 and y0
respectively (i.e. x0 >, y0 > 0), where x, y ∈ R+, n ∈ N , τ is an impulsive periodic
time, and a, b ∈ R+ are constants.
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3 Permanent

If the parameter a = 0, Fig. 1 shows that the trajectory described by Eq. 2.2 finally
falls on the y axis. The positive quadrant is divided into I, II, III regions by isoclinal
lines of system (2.2).

Theorem 3.1 R2
0+ = {(x, y)|x ≥ 0, y ≥ 0} is an invariant domain of Eq. 2.2.

Proof If x0 = 0, then ẋ = 0, ẏ = 0, for all t (0 < t < τ). Due to the effect of
impulsive disturbance, the initial point (x0, y0) jumps to point (a, y0) at time t = τ .
We get

dy
dt |y=0 > 0, at x > 0.

The curves of Eq. 2.2 do not cross the x axis and enter the fourth quadrant. Therefore,
if the initial point (x0, y0) ∈ R2+0, the cures described by Eq. 2.2 still belong to this
region. This completes the proof of Theorem 3.1.

Introduce three different types of basic models, that are,

{
u̇ = r1 − r2u,
u(0) = u0.

(3.1)

and

⎧⎨
⎩

u̇ = −ru, t �= nτ
u(t+) = u(t)+ p, t = nτ,
u(0+) = u0.

(3.2)
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Fig. 1 I = {(x, y)|(ẋ < 0, ẏ > 0)}, II = {(x, y)|(ẋ < 0, ẏ < 0)}, III = {(x, y)|(ẋ > 0, ẏ < 0)}. The
graph describes dynamical behaviors of system (2.2) at a = 0
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and
{
v̇(t, x) ≤ g(t, v(t, x)), t �= nτ
v(t, x(t+)) ≤ ψn(v(t, x(t))), t = nτ.

(3.3)

��
For Eqs. 3.1, 3.2 and 3.3, we have the following conclusions.

Lemma 3.1 Systems (3.1) have a positive equilibrium u∗ and for every solution u of
Eq. 3.1

|u − u∗| → 0, as t → ∞,

where u∗ = r1
r2

.

Lemma 3.2 Systems (3.2) have a positive periodic solution u∗(t) and for every
solution u(t) of Eq. 3.2

|u(t)− u∗(t)| → 0, as t → ∞,

where u∗(t) = pe−(r(t−nτ ))

1−e−rτ , t ∈ (nτ, (n + 1)τ ], n ∈ N.

Lemma 3.3 Let v ∈ v0. Assume that systems (3. 3)

{
D+V (t, x) ≤ g(t, V (t, x)), t �= nτ,
V (t, x(t+)) ≤ ψn(V (t, x(t))), t = nτ,

where g: R+ × R+ −→ R satisfies (H) and ψn : R+ → R+ is non-decreasing.
(H) g is continuous in (nτ, (n + 1)τ ] × R, and for x ∈ R+, n ∈ N ,
lim g(t, y) = g(nτ+, x) exists, as (t, y) → (nτ+, x).
Let r(t) be the maximal solution of the scalar impulsive differential equation

⎧⎨
⎩

u̇ = g(t, u), t �= nτ,
u(t+) = ψn(u(t)), t = nτ,
u(0+) = u0.

Then v(0+, x0) ≤ u0 implies that v(t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any solution
of (2.2).

Theorem 3.2 Systems (2.2) are permanent if (b + 1)τ > ln2, for 0 < τ < 1, or
(b + 1) > ln 2, for τ > 1.

We will prove this conclusion through these following four lemmas.

Lemma 3.4 For the solution x(t) of Eq. 2.2, there exists a T1 > 0, such that

x(t) > m1, as t > T1,

where m1 is a positive constant.
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Proof For all t since y(t) ≥ 0, we get

ẋ ≥ −(b + 1)x .

By Lemma 3.2, we have

x(t) ≥ u(t) and u(t) → u(t), as t → ∞,

where u(t) is the solution of

⎧⎨
⎩

u̇ = −(b + 1)u, t �= nτ,
u(t+) = u(t)+ a, t = nτ,
u(0+) = x0,

and u(t) = ae−(b+1)(t−nτ )

1−e−(b+1)τ , t ∈ (nτ, (n + 1)τ ].
For t ∈ (nτ, (n + 1)τ ], u(t) is a monotonic decreasing function of time t and has

a minimum value m1 at t = (n + 1)τ , that is,

m1 = ae−(b+1)

1−e−(b+1)τ .

So, there must exist a T1 > 0, such that

x(t) ≥ u(t) ≥ u(t) ≥ m1, as t > T1.

Meanwhile, because the condition m1 < a is satisfied, there is no oscillation over the
whole range of 0 < x(t) < a. This completes the proof of Lemma 3.4. ��
Lemma 3.5 For the solution y(t) of Eq. 2.2, there exists a T2 > T1, such that

y(t) < M2, as t > T2,

where M2 = b+1
m1

is a positive constant.

Proof If y0 > M2, there must exist a T2 > T1, in order that

y(t) ≤ M2, as t ≥ T2.

Otherwise, by the trajectory in the I region, we assume a positive constant h satisfies
the following formula

y(t) → h and x(t) → ∞, as t → ∞, (see Fig. 1)

where h > M2 is a positive constant, and x(t) is the solution of Eq. 2.2.
Introduce a V (t) function, that is,

V (t) = x(t)+ y(t).
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For any value of the parameter λ, we compute

V̇ (t)+ λV (t) = (λ− 1)x(t)+ λy(t),

choose 0 < λ0 < 1, such that

(λ0 − 1)x(t) < 0 and V̇ (t)+ λ0V (t) < λ0 y(t).

For t → ∞, by the assumption

λ0 y(t) → λ0h.

Solve the following equations

⎧⎨
⎩

V̇ (t)+ λ0V (t) < k, t �= nτ,
V (t+) = V (t)+ a, t = nτ, n ∈ N , t → ∞,

V (0+) = x0 > 0.

By Lemma 3.3

V (t) ≤
(

V (0+)− k
λ0

)
e−(λ0t) + a(1−e−(nλ0τ ))

1−e(−λ0τ )
+ k

λ0
, t ∈ (nτ, (n + 1)τ ].

Therefore V (t) is ultimately bounded, and it just contracts with the assumption

y(t) → h, x(t) → ∞, and V (t) = x(t)+ y(t) → ∞, as t → ∞.

Hence, there exists a T2 > T1, such that

y(t) ≤ M2, as t ≥ T2.

If y0 < M2, in the I region we compute

dy

dt
< 0, f or all t > T1.

So, whatever y0 ≤ M2 or y0 > M2, there exists a T2 > T1, such that

y(t) ≤ M2, as t ≥ T2.

This completes the proof of Lemma 3.5. ��
Lemma 3.6 For the solution of Eq. 2.2, there exists a T3 > T2, such that

x(t) ≤ m2, as t ≥ T3,

where m2 = k
λ0

is a positive constant.
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Fig. 2 The two graphs are that of bifurcations about the reactants of x(t) and y(t) respectively for 0.5 ≤
a ≤ 1.5. Initial conditions : (x0, y0) = (2, 1), b = 3.57, τ = 1
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Fig. 3 The three graphs are those of reactants x–y plane and time series respectively. Initial conditions is
the same with Fig. 2. At fixed a = 1.3 for 75 ≤ t ≤ 100

Proof By means of Lemma 3.5, similar reasoning can judge the boundedness of x(t)
so long as y(t) is bounded. Since

y(t) < M2, as t > T2,

we get

x(t) <
(

V (0+)− k
λ0

)
e−λ0t + a(1−e−nλ0τ )e−λ0(t−nτ )

1−e−λ0τ
+ k

λ0
, as t > T2.
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Fig. 4 Compare with Fig. 3. At the same a = 1.3, but for 225 ≤ t ≤ 300. That shows Fig. 3 is convergent
to a stable 1-periodic solution as t −→ ∞

Then, there exists a T3 > T2, such that

x(t) ≤ m2, as t > T3.

This completes the proof of Lemma 3.6. ��
Lemma 3.7 For the solution y(t) of Eq. 2.2, there exists a T4 > T3, such that

y(t) > M1, as t > T4,

where M1 is a positive constant.
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Fig. 5 Compare with Figs. 3 and 4, with the same initial conditions of Fig. 2, chaos occur for typical
a = 1.16 in a shade region

Proof Since

m1 ≤ x(t) ≤ m2, as t > T3,

we get

ẏ ≥ bm1 − m2
2 y.

By Lemma 3.1, we have

y(t) ≥ v∗, as t → ∞,

where v∗ is the solution of

{
v̇ = bm1 − m2

2v,

v(0) = y0.
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Fig. 6 Compare with Fig. 5 and with the same initial conditions of Fig. 5, a different behavior of chaos
occurs for a = 1.25 in a different shade region
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Fig. 7 The limit cycle of the brusselator system (2.1) with initial conditions a = 0.8, b = 1.7,
x0 = 1, y0 = 1.7
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Fig. 8 Under such conditions b < 1 + a2, the solution of system (2.2) is periodic solutions. These graphs
are that of phase diagram and those of time series respectively with initial conditions a = 1.5, b = 2,
x0 = 2, y0 = 1.45

So there exists a T4 > T3, such that

y(t) > M1, as t > T4,

where M1 = bm1
m2

is a positive constant.
In the III region if the condition y0 > M1 is satisfied, we compute

dy
dt > 0, f or all t > T4.

Therefore, whatever y0 > M1 or y0 ≤ M1, there exists a T4 > T3, such that

y(t) > M1, as t > T4.

This completes the proof of Lemma 3.7. ��
By means of Lemmas 3.4–3.7, we complete the proof of Theorem 3.2.
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4 Bifurcations and chaos

We think the bifurcation and chaos of the solution about system (2.2) as the change of
the parameter a (i.e. the quality of the reactant A) and get the following conclusions.

Figure 2 shows, if the parameter a is within above-unshade regions, systems (2.2)
is stable and convergent to a stable periodic solution, such as Figs. 3 and 4; but if
the parameter a is within above-shade regions, systems (2.2) is unstable and chaos
occur, such as Figs. 5 and 6. Therefore, these bifurcations reveal a transition from
periodic solutions to chaos for systems (2.2) as the parameter a change in the region
0.5 ≤ a ≤ 1.5.

5 Conclusions

Previous report [12] show that under such condition b > 1 + a2 the brusselator
system (2.1) has a stable limit cycle in the positive quadrant (see Fig. 7). Under the
same condition, however, system (2.2) present periodic solutions and chaos by turns
(see Figs. 2–6). Meanwhile under the contrast condition b < 1+a2, we proved system
(2.2) was a periodic solution (see Fig. 8).
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